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1 Fitting a Model in R

Let’s create some artificial data that fit a simple linear regression model. We’ll

� make the X variable normal;

� create an ε that is also normal and independent;

� then create Y from the linear model equation Y = b0 + b1X + ε

In the code below, I set b1 and b0 to 0.7 and 5, respectively.

> set.seed (12345) ## seed the random generator

> X ← rnorm(200)

> epsilon ← rnorm(200)

> b1 ← 0.7

> b0 ← 5

> Y ← b0 + b1 * X + epsilon

Displaying the scatterplot in R uses the plot command:

> plot(X,Y)
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Adding the best-fitting straight line is easy. We obtain a linear model “fit
object” with the command:

> fit.1 ← lm(Y˜X)

> fit.1

Call:

lm(formula = Y ~ X)

Coefficients:

(Intercept) X

5.0796 0.7337

These fitted coefficients have a sampling error connected to them, of course.
We know that the population values are 0.7 and 5, while the sample estimates
here are 0.73 and 5.08.

Adding the best fitting straight line is very simple in R, if you’ve saved your
fit object. You just type:

> plot(X,Y)
> # make the fit line dotted and red

> # lty=2 dotted

> abline(fit.1 ,lty=2, col = ' red ' )
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abline is a versatile function that plots lines with a given slope and intercept.
It also operates directly on a fit object.

2 Examining Residuals

Recall that the residuals should have a conditional mean of zero for any con-
ditional value of X, and the residual variance should not vary as a function of
X.

A quick visual examination with a residual plot can reveal major departures
from these assumptions.

Computing residuals is really simple in R. You simply apply the residuals
function to the fit object.

> plot(X, residuals (fit.1))
> #add a red dotted line at zero

> #to aid evaluation

> abline (0,0,lty=2, col = ' red ' )

3



●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

X

re
si

du
al

s(
fit

.1
)

Things look just as they should.

The residuals are centered on the zero line, and show about the same level
of variability as we move across the zero line from left to right.

3 Diagnosing Problems

Let’s create data that systematically deviate from the linear regression model.

> set.seed (12345) ## seed the random generator

> X ← rnorm(200)

> epsilon ← rnorm(200)

> b1 ← .6

> b0 ← 2

> Y ← exp(b0 + b1 * X) + epsilon

Plotting the data, we see a nonlinear relation. I’ve added a blue line showing
the conditional mean of Y given X. You can see why, when you fit a straight
line to these data, the residuals will have a positive mean at low values of X, a
negative mean in the middle values, and a positive mean at high values of X.

> plot(X,Y)
> fit.2 ← lm(Y˜X)
> abline(fit.2 ,lty=2, col = ' red ' )

> curve(exp(b1*x + b0),add=TRUE , col = ' blue ' )
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This shows up very clearly in the residual plot

> plot(X, residuals (fit.2))

> abline (0,0,lty=2, col = ' red ' )

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●● ●

●

●●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

−2 −1 0 1 2

0
5

10

X

re
si

du
al

s(
fit

.2
)

Diagnosing Nonlinearity
In this case, the solution is straightforward (especially since we know the

precise rule that generated the data!).

Since the systematic part of the graph is an exponential function of a linear
function of X, the log of Y should have a linear relationship with X. So simply

5



transforming Y should make a linear regression work much better.

Diagnosing Nonlinearity

> log.Y ← log(Y)
> fit.3 ← lm(log.Y ˜ X)

> plot(X,log.Y)

> abline(fit.3 ,lty=2, col = ' red ' )
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Diagnosing Nonlinearity

> plot(X, residuals (fit.3))

> abline (0,0,lty=3, col = ' red ' )
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4 Measures of Model Fit

4.1 R2

The multiple correlation R for a linear regression model is the correlation be-
tween the predicted scores ŷ and the actual criterion scores y.

Statistical texts have a long tradition of using R to stand for both the pop-
ulation and sample multiple correlation. I’m not sure if it would help for me to
depart from this tradition.

Consequently, I’ll refer loosely to “the population R2” or, when confusion is
more likely, R2

pop. Some authors will use ρ2, and you’ll have to stay alert for
these notational variations.

Denoting the variance of the y’s by σ2
y, the variance of the predicted scores

by σ2
ŷ, and the variance of the residuals by σ2, we can show that

R2
pop =

σ2
ŷ

σ2
y

(1)

That is, R2
pop is the proportion of the variance of the criterion that is predictable

from the linear regression equation.
As a simple consequence of the geometry of linear regression, the predicted

and residual scores in linear regression are always precisely uncorrelated, and
consequently,

σ2
y = σ2

ŷ + σ2
ε (2)
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Consequently, we may also write

R2
pop = 1− σ2

ε

σ2
y

(3)

or, equivalently

R2
pop =

σ2
y − σ2

ŷ

σ2
y

(4)

If the regression equation is of no use at all, the residual variance is simply σ2
y.

So another way of describing R2 is “the proportion of potential error variance
saved by using the regression equation.”

4.2 The residual standard deviation σ̂

The residual standard deviation σ̂
The conditional distribution of y given x = a is the mean of the distribution

of y for those pairs of values for which x takes on the value a. Conditional distri-
butions are of fundamental importance in statistics, because many distributions
are interpretable primarily when conditionalized.

Consider, for example, height and weight. We are used to interpreting weight
conditionalized on a value of height. If a person weighs 210 pounds, our inter-
pretation is quite different for a height of 56 inches than for a height of 84
inches.

The residual standard deviation σ̂
A key result in linear regression theory is that conditional means follow the

regression line. That is, the conditional mean of the distribution of y given
x = a is normal, with mean ŷ evaluated at a. Moreover, the standard deviation
of the conditional distribution is σε.

Consequently, σε tells us how the observations in the conditional distribution
are spread out around the conditional mean, and is a direct measure of how
closely we can predict a value of y from the value of x.

The residual standard deviation σ̂
For example, suppose the regression line relating weight to height is y =

6x− 270, and σε = 20. What is the conditional distribution of y given x = 75?

Let’s write an R function to compute ŷ

> yhat ← function(a){6*a-270}

> yhat (75)

[1] 180

The conditional mean is 180. The conditional distribution has a standard devi-
ation of 20.

8



The residual standard deviation σ̂
The preceding result tells us that men who are 75 inches tall show a distribu-

tion of weights. This distribution is centered on 180, but also shows considerable
variation around it.

How likely is a 75 inch tall man’s weight to be within ±20 pounds of the
predicted value 180?

From our basic knowledge of the normal curve, we know that values within
±1 standard deviation of the mean occur about 68% of the time. We can also
see that men who are 75 inches tall are above 200 pounds in weight about 16%
of the time.

> 1-pnorm (200 ,180 ,20)

[1] 0.1586553

The residual standard deviation σ̂ vs. R2

Gelman and Hill make the point that σ̂ can convey information different
from R2. Suppose we look at the relationship between height and weight for a
large group of men, and assume that, in the general population, weights have a
mean of 150 and a standard deviation of 25, and heights have a mean of 70 and
a standard deviation of 2.5, and, moreover, heights and weights correlate 0.60.
Then R2 = .36, and σε = 20.

The residual standard deviation σ̂ vs. R2

We can create data in R to simulate this situation:

> set.seed (12345)

> height ← rnorm(1000 ,70 ,2.5)

> error ← rnorm(1000 ,0 ,20)

> weight ← 6 * height -270 + error

> height.data ← data.frame(height ,weight)

> attach(height.data)

The following object(s) are masked _by_ .GlobalEnv :

height weight

The residual standard deviation σ̂ vs. R2

Here is the output:

> fit ← lm(weight˜height)

> summary(fit)

9



Call:

lm(formula = weight ~ height)

Residuals:

Min 1Q Median 3Q Max

-64.63010 -13.95044 0.02194 14.31202 67.15312

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -292.5670 17.9244 -16.32 <2e-16 ***

height 6.3132 0.2555 24.71 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 20.16 on 998 degrees of freedom

Multiple R-squared: 0.3796, Adjusted R-squared: 0.379

F-statistic: 610.6 on 1 and 998 DF, p-value: < 2.2e-16

The residual standard deviation σ̂ vs. R2

Here is the plot:

> plot(height ,weight)

> abline(fit ,lty=2, col = ' red ' )
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The residual standard deviation σ̂ vs. R2

We can restrict ourselves to a narrower range of heights

> restricted.range ← height.data[which( (height > 68) & (height < 72)) ,]

> fit ← lm(restricted.range$weight ˜ restricted.range$height)

> summary(fit)
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Call:

lm(formula = restricted.range$weight ~ restricted.range$height)

Residuals:

Min 1Q Median 3Q Max

-60.7019 -14.2128 0.2260 14.2996 61.6950

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -273.6950 52.9370 -5.170 3.22e-07 ***

restricted.range$height 6.0431 0.7556 7.998 6.82e-15 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 20.3 on 584 degrees of freedom

Multiple R-squared: 0.09872, Adjusted R-squared: 0.09718

F-statistic: 63.97 on 1 and 584 DF, p-value: 6.816e-15

The residual standard deviation σ̂ vs. R2

Here is the picture

> plot(restricted.range$height ,restricted.range$weight)

> abline(fit ,lty=2, col = ' red ' )
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